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Flow in curved ducts. Part 2. Rotating ducts 

By P. DASKOPOULOS A N D  A.M. LENH0FF-f  
Department of Chemical Engineering, University of Delaware, Newark, DE 19718, USA 

(Received 25 August 1989) 

When a coiled tube is rotated about the coil axis, the effects of rotation interact with 
centrifugal and viscous effects to  complicate the flow characteristics beyond those 
seen in stationary curved ducts. The phenomena encountered are examined for 
st,eady, fully developed Newtonian flow in circular tubes of small curvature. The 
governing equations are solved using orthogonal collocation, and the results 
presented cover both the nature of the flow and the bifurcation structure. When 
rotation is in the same direction as the axial flow imposed by a pressure gradient, the 
flow structure remains similar to that seen in stationary ducts, i.e. with two- or four- 
vortex secondary flows in addition to the axial flow. There are, however, quantitative 
changes, which are due to the Coriolis forces resulting from rotation. The bifurcation 
structure also shows only quantitative changes from that for stationary ducts a t  
all values of Taylor number examined. More complex behaviour is possible when 
rotation opposes the flow due t o  the pressure gradient. In  particular, the direction 
of the secondary flow may be reversed at higher rotational strengths, and the 
mechanism of the flow reversal is explored. The flow reversal occurs smoothly a t  low 
Taylor numbers, but a t  higher rotational strengths a cusp appears in the primary 
solution branch in the vicinity of the flow reversal. 

1. Introduction 
I n  a previous paper (Daskopoulos & Lenhoff 1989, hereinafter referred to  as I), 

we discussed the bifurcation characteristics for developed flow in stationary curved 
ducts. The work presented here deals with rotating curved ducts, which are relevant 
to systems involving helically or spirally coiled tubes rotating about the coil axis. 
Such systems are encountered in applications such as separation processes (Adler 
et al. 1981, 1982; Lennartz, Gorensek & Adler 1987) and cooling devices in rotary 
machines such as gas turbines, electric generators, motors, etc. 

The principles of rotation in pipe flow and the roles of centrifugal and Coriolis 
forces have been studied extensively (see e.g. Batchelor 1967 ; Greenspan 1968), but 
although the uhderlying physical phenomena are well understood, rotating curved 
pipes have not been examined in detail. The nature of the flow is affected by the 
interaction of the imposed pressure-driven axial flow and system rotation, with the 
rotation introducing additional parametric dependence beyond that encountered for 
stationary curved ducts, and Coriolis forces becoming important in addition to just 
centrifugal effects. 

The effects of rotation alone have been studied in the case of a straight pipe 
rotating about an axis perpendicular to the pipe axis, a limiting case of the more 
general situation of flow in rotating curved pipes. Flow in rotating straight ducts is 
of interest also because the secondary flows that arise here are qualitatively similar 
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to those in stationary curved systems, in view of the similar centrifugal mechanisms 
inducing the secondary flows in the two systems. Thus a brief overview of flow in 
rotating straight pipes is provided. 

To describe behaviour in the limit of low rotational speeds, Barua (1954) used a 
regular perturbation expansion about the Poiseuille flow limit, similar to Dean’s 
(1927, 1928) approach for stationary curved duct flow. Results qualitatively similar 
to Dean’s were obtained: a secondary flow consisting of a pair of counter-rotating 
helical vortices, and an increase in the friction factor ratio. Subsequent boundary- 
layer analyses also predicted a significant increase in the friction factor with 
rotational speed for small rotational rates and high axial pressure gradients (Mori & 
Nakayama 1968; I t6  & Nanbu 1971), the latter group also obtaining satisfactory 
agreement with their experimental measurements. Mansour ( 1985) used a computer 
extension of the perturbation expansion in seeking results at higher angular 
velocities, in the spirit of Van Dyke’s (1975) method applied to flow in stationary 
curved pipes (Van Dyke 1978). However, the applicability of the results far beyond 
the Poiseuille limit is questionable. 

In the limit of rapid rotation compared to the axial flow, a geostrophic core 
surrounded by a thin boundary layer a t  the wall can be assumed (Benton & Boyer 
1966); the analogous situation in stationary curved ducts is that of high Dean 
numbers (Barua 1963), and similar results are obtained for both problems. Jones & 
Walters (1967) also adapted an analysis of high-Dean-number flow in stationary 
curved ducts (Dean & Hurst 1959) to high-rotation-rate flow in straight tubes. 

For the situation of comparable rotation and imposed axial flow, numerical 
solutions of the describing equations are required. Speziale’s (1982) work on ducts of 
rectangular cross-section revealed a structure for the secondary flow very similar to 
that subsequently observed in stationary curved ducts (Winters 1987 ; I). The usual 
counter-rotating double-vortex configuration for the secondary flow was seen in 
the limit of slow rotation, but with a substantial increase in rotational speed 
a t  sufficiently high Reynolds numbers, this configuration breaks down into an 
asymmetric four-vortex configuration. With a further increase in rotational speed, 
the original picture of double counter-rotating vortices reappears. These initial 
studies of bifurcation phenomena were extended, and stability of the solutions 
examined, by Kheshgi & Scriven (1985), for rotating ducts of square cross-section. 
They also reported the existence of multiple solutions, exhibiting two- and four- 
vortex structures symmetric with respect to the centreline of the duct. These two 
branches were found to be stable, and joined by an unstable solution branch that 
develops through two turning points. 

Flows in stationary curved and rotating straight conduits are thus qualitatively 
similar, but the combined effects of curvature and rotation, relevant to flow in 
rotating curved ducts, have not been explored thoroughly. The initial work (Ludwieg 
1951 ; Hocking 1967) used the mornentum-integral method to solve the boundary- 
layer equations for large values of Dean number and rotational velocity, and 
suggested a significantly higher pressure drop than that for stationary systems. At  
lower flow and rotation rates, Miyazaki’s (1971, 1973) solution also predicted an 
increase of the friction factor with an increase in the strength of rotation. The flow 
here is characterized by a secondary flow consisting of a pair of counter-rotating 
vortices, qualitatively similar to the picture in other systems described above. 
However, since Miyazaki considered only the case where the rotation and the 
pressure-driven flow through the duct are in the same direction, he left part of the 
parameter space unexplored. 

It6 & Motai (1974) realized that while centrifugal forces act radially outwards 



Flow in curved ducts. Part 2 577 

irrespective of the direction of rotation of the pipe, the Coriolis force is perpendicular 
to both the axis of rotation and the direction of the relative velocity of the fluid, and 
acts radially outwards or inwards for positive or negative rotation respectively. Their 
calculations with opposing rotation and axial flow directions revealed a reduction of 
the strength and even a reversal of the direction of the secondary flows, the reversal 
occurring where the effects of centrifugal and Coriolis forces just neutralize each 
other. The secondary flow exhibits a four-vortex character, qualitatively arid 
quantitatively different from the four-vortex solution observed in stationary ducts 
and discussed in I. A further increase in the relative magnitude of rotation leads to 
the disappearance of the four-vortex structure and reversal of the circulation pattern 
of the secondary flow, while an increase of the axial flow strength leads back to the 
familiar two-vortex secondary flow pattern observed in stationary curved ducts. 

It6 & Motai's results were obtained using a perturbation expansion and are thus 
limited to relatively small Dean numbers. Menon (1984) confirmed the reversal of the 
secondary flow even for higher Dean numbers, but since he did so by modifying Van 
Dyke's (1978) analysis, based on numerical extension of a perturbation expansion, 
his results are not definitive. Joseph & Adler (1975) also observed the secondary flow 
reversal for flow in helically coiled tubes of square cross-section oscillating 
sinusoidally about the helix axis. 

Experimental studies in rotating circular (Eutcneuer & Piesche 1978) and 
rectangular curved ducts (Ludwieg 1951 ; Piesche & Felsch 1980; Piesche 1982) have 
confirmed that the pressure drop is significantly higher than that for straight pipes, 
in agreement with theoretical studies. 

Although the qualitative nature of flow in rotating curved ducts has been 
elucidated, a complete description of laminar flow over the entire parameter space 
remains to be obtained. In particular, the bifurcation structure and the mechanism 
of secondary flow reversal need to  be explained further. These issues are addressed 
in this paper. 

2. Problem formulation and solution 
The specific idealized problem considered in I was developed, incompressible, 

Newtonian flow in a curved tube of small curvature and negligible pitch, the driving 
force being a pressure gradient G.  The additional feature, rotation, can be 
incorporated in either of two ways: modification of the wall boundary condit,ion 
while leaving the describing equations unchanged, or use of a rotating coordinate 
system, which would leave the boundary conditions unchanged but affect the 
describing equations. The latter approach was preferred because it allowed the 
solution procedure used in I to be implemented directly. The modified coordinate 
system is the same orthogonal toroidal one as used in I (figure l) ,  but i t  rotates 
a t  angular velocity to. The effect of rotation is to introduce a fictitious body 
force (see e.g. Greenspan, 1968), which gives rise to an additional contribution 
$gw2(R + r' cos a)2 to the pressure. 

The resulting equations in the limit of small curvature are, in dimensionless form, 



578 P .  Daskopoulos and A . M .  Lenhoff 

Z .tw 

0 

FIGURE 1. Rotating toroidal coordinate system. 

where radial position and the (r’, a, @-components of velocity, ( U ,  V ,  W ) ,  are scaled as 

aU a v  u=-, v = -  
r’ 

a ’  V V 
r = -  (3) 

with v the kinematic viscosity. Equations ( 1 )  and (2) are written in terms of the 
dimensionless secondary flow stream function $ ( r ,  a) instead of the secondary flow 
velocities u and ?I. The key dimensionless parameters are the Dean number 

D - Ga3rar 
Y V  R 

and the Taylor number 

1 awR 
TU = 2(2S)~-, 

V 

(4) 

where ,u is the dynamic viscosity. Alternative scaling approaches would lead to 
different dimensionless parameters, e.g. a Rossby number ( -B/Ta)  or an Ekman 
number ( -  l/Ta&). The particular dimensionless parameters used in this work lead 
to an explicit dependence of one term in equation ( 1 )  on the curvature S = a/R. This 
term is of order 6 in a slowly rotating system and can be ignored in the limit of small 
curvature, but since it can become significant for very fast rotation, i t  must be 
retained in the system equations. Because including 6 as an independent parameter 
significantly increases the scope of the problem, the numerical simulations reported 
later are based on using the fixed value S = 0.01 as typical of small curvature. 
Choosing a different value for 6 has little effect when rotation is weak (Ta < D), and 
while quantitative results are affected a t  higher rotational speeds, t,he physical 
picture is not changed (Daskopoulos 1989). 
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Equations (1) and (2) for T a  = 0 reduce to the equations for stationary systems 
used in I, and in the limit 8 = 0, after proper scaling, to the equations for flow in a 
straight pipe rotating about a perpendicular axis (Mansour 1985). 

As was the case in I, the only solutions examined are those that are symmetric 
about the centreline of the tube. In  view of this and the use of a rotating coordinate 
system, the boundary conditions used in I for stationary ducts apply here too. This 
has the advantage that the orthogonal collocation technique used to solve the 
equations in I can be used here with the same basis functions, viz. Chebyshev 
polynomials and Fourier series in the radial and azimuthal directions respectively. 
The resulting set of algebraic equations was solved, as in I, using Newton’s method, 
with the convergence criterion that the fractional improvement between successive 
iterations be less than 1O-l2, based on the co-norm. 

The bifurcation structure presented in I for stationary curved ducts was obtained 
by continuation in D ,  with additional insight into the morphogenesis obtained by 
continuation from the ‘perfect’ problem (Benjamin 1978) of azimuthal flow in a 
curved slit. The structure has a stable primary solution, characterized by a two- 
vortex secondary flow, as the unique solution for small D, and present for all D in the 
laminar flow regime. A one-sided bifurcation at  D 4 956 introduces two four-vortex 
solutions, one stable and the other unstable, also existing over the remainder of the 
laminar flow regime. A new solution family comprising two unstable branches was 
also found above a turning point at  D = 2494. 

The approach used here to include T a  as an additional parameter is continuation 
in T a ,  starting from the T a  = 0 limit examined in I, a situation summarized in the 
previous paragraph. Zeroth- and first-order continuation techniques were used, with 
singular points traversed by arclength continuation (Keller 1977, 1982). It is also 
possible to study the morphogenesis of the bifurcation structure by starting from the 
perfect problem, in this case combined pressure-driven azimuthal flow and rotation 
in a curved slit, but such an investigation is much more demanding computationally 
and was not undertaken. 

The stability of the different solutions was determined by examining the 
eigenvalues of the Jacobian matrix, as described in I. 

3. Results and discussion 
Because of the definition of w ,  T a  > 0 represents the case of positive rotation, i.e. 

rotation in the same sense as the fluid flow due to the axial forcing, and Ta < 0 that 
of negative rotation. Because of the physical differences between the two situations, 
first examined by It6 & Motai (1974), the results for Ta > 0 and Ta < 0 are discussed 
separately. Additional details are presented by Daskopoulos (1989). 

3.1. Codirectional rotation and axial flow 
For slow rotation, the results obtained for both the bifurcation structure and the flow 
characteristics are essentially identical to those for stationary ducts described in I. 
As T a  is increased, the flow characteristics remain qualitatively the same, but there 
are quantitative changes : the secondary flow is significantly enhanced and the 
primary flow becomes weaker. These effects are visible in the axial velocity contours 
and secondary flow streamlines (figure 2a ,  b)  and the axial and radial velocities along 
the centreline (figure 3) for the primary solution at D = 100. The values of axial 
velocity are relative to the tube wall, because of the use of the rotating coordinate 
system, and a negative value ofr in figure 3 indicates values along the line a = IT. The 
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FIGURE 2. Secondary flow streamlines (top) and axial velocity contours (bottom) for stable 
two-vortex solution at D = 100. (a) Tu = 1 ; (b )  Tu = 1000; ( c )  Tu = 10000. 

changes seen can be explained in terms of Coriolis forces, which become significant 
as the rotational speed increases. The component in the cross-section is directed 
towards the outer wall of the tube and hence enhances the secondary flow, while the 
axial component, proportional to the secondary flow velocity, opposes the axial flow 
in the central core of the tube, and hence decelerates the main flow. This argument 
does not hold near the upper wall of the tube, where the secondary flow is inward. 

When the Taylor number is high enough for rotation to be dominant, a totally 
different flow situation is obtained, as shown for the primary solution family in figure 
2 ( c ) ,  with similar distortion also observed in the additional solution families. In  
general the effects of dominant rotation are manifested by Ekman boundary layers 
developing near the walls, with a geostrophic central core of the fluid displaying 
inviscid behaviour. This situation resembles that described by Benton & Boyer 
(1966) for flow through a rapidly rotating straight pipe, and i t  is a characteristic 
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FIGURE 3. (a) Axial and (b)  radial velocity distributions along the centreline at D = 100. 

Taylor-Proudman flow configuration (Greenspan 1968) with columnar motion in the 
central core: entire pillars of fluid in the direction parallel to the axis of rotation 
move axially at a constant velocity, while the flow in the core in the direction parallel 
to the rotation axis becomes minimal, as indicated by the parallel axial isovels and 
the flattening of the secondary flow streamlines. The initial increase in strength of 
the secondary flow is replaced by a weakening, because the deceleration of the axial 
flow leads to weaker centrifugal forces. Both the axial velocity contours and the 
secondary flow streamlines exhibit symmetry about the vertical centreline, in 
accordance with the observation that in general Coriolis forces tend to restore the 
equilibrium state of the system (Greenspan 1968). The axial velocity a t  the edge of 
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FIGURE 4. Secondary flow streamlines and axial velocity contours for stable two-vortex solution 
at D = 1000. (a) Tu = 1; ( b )  Tu = 1000. 
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FIGURE 5. Bifurcation diagram at Ta = 1000, with radial velocity at r = 0.9 on plane of symmetry 
as state variable. -, Stable solution ; ~ , unstable solution ; ~ , doubly unstable solution. 
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10 000 

D, 
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939.06 
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478.27 
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40 1.43 
492.38 
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1100.12 
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D, 
2494.22 
2490.17 
2487.06 
2348.72 
1774.47 
1525.87 
1352.93 
1027.76 
1178.74 
1491.79 
1880.41 

TABLE 1. Turning points for the case of positive rotation 

the Ekman layer a t  the lateral walls (a = +in) shows an overshoot, as has also been 
observed experimentally by Hart (1971) for rotating rectangular geometries. 

The effects of rotation illustrated for D = 100 in figure 2 are less pronounced at 
higher D. Figure4, for example, shows values of Ta up to 1000 to induce quantitative 
but not appreciable qualitative changes a t  D = 1OOO. A reasonable measure of 
whether rotation is significant is that  Ta should exceed D in magnitude. 

The bifurcation structure remains qualitatively the same as that presented in I for 
stationary ducts, although there are quantitative differences corresponding to the 
trends described above. An example is shown in figure 5 for Ta = 1000. Initially the 
solutions other than the primary one are stabilized by rotation, as indicated by a 
shift of the turning points to lower values of D as Ta increases. However, this trend 
is reversed in the limit of dominant rotation, with the turning points moving back 
towards higher values of D as Ta is increased further. The positions of the turning 
points over the entire parameter range of positive Ta are given in table i. D, denotes 
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FIGURE 6. Secondary flow streamlines and axial velocity contours for stable two-vortex solution 
at D = 100. (a )  Ta  = -100; ( b )  Ta  = -1000. 
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FIGURE 7. Secondary flow streamlines and axial velocity contours for stable two-vortex solution 
at D = 1OOO. Tu = - 100. 

the turning point between the stable and unstable four-vortex branches and D, the 
corresponding one for the additional solution family. The reversal of the movement 
from smaller to larger values of D does not happen in the same region for the two 
turning points. This is to be expected, since the flow nature depends on the relative 
magnitude of the effects arising from the pressure-driven axial flow and the rotation. 
Hence, for lower values of D the rotation-dominated region begins a t  lower values of 
T a  . 

3.2. Cownterdirectional rotation and axial flow 
When the effects of rotation oppose those induced by the pressure-driven axial flow, 
the flow situation is more complicated : the secondary flows can be different in nature 
in various regions of the parameter space. 

For small negative values of Ta ,  the situation again resembles flow in stationary 
curved ducts. As the magnitude of T a  is increased, however, system rotation 
enhances the strength of the axial flow and decreases that of the secondary flow, and 
this ultimately leads to qualitative changes in flow characteristics. These are shown 
in figure 6 for D = 100 on the primary solution branch for two values of T a ;  figure 
2 (a )  is representative of behaviour at low T a  for comparison. The secondary flow for 
larger ITaJ still consists of a pair of counter-rotating vortices, but the fluid now moves 
from the outer wall of the tube to the inner through the central core and recirculates 
around the periphery of the pipe. In addition, the position of the maximum axial 
velocity is shifted towards tho inner wall of the tube. With an incrcasc in D (figure 
7), the familiar picture obtained in stationary systems is recovered. 

The mechanism of the secondary flow reversal can be seen in figure 8, which shows 
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FIGURE 9. Bifurcation diagram at Ta = - 100; key as for figure 5. 

solutions in the neighbourhood of the transition for D = 100, obtained by 
continuation in Ta with a small step. The results can be explained using qualitative 
arguments similar to those of Adler et al. (1982). With the axial flow opposing the 
spinning motion of the tube, there exists a parameter range where, overall, the effects 
of rotation neutralize those of the axial pumping. In this region, the fluid near the wall 
is left with the maximum net velocity relative to fixed axes. Centrifugal forces are 
then stronger near the wall of the tube and tend to throw the fluid outward, in a 
direction opposite to the familiar secondary flow pattern for stationary ducts. Hence 
a new vortex appears near the inner and lateral walls of the tube, squeezing the 
circulation due to the curvature of the system to the central portion of the tube. The 
original stable two-vortex family thus now exhibits a four-vortex structure which is 
qualitatively different from the four-vortex families encountered in stationary ducts. 
As the effects of rotation become stronger, the original circulation pattern is squeezed 
more and more to  the pipe centre and finally vanishes, leaving a two-vortex 
circulation pattern again, but with the opposite direction of circulation. 

The secondary flow reversal occurs a t  higher D as ITal is increased, and this is 
accompanied by qualitative changes. The apparent symmetry along the vertical 
centreline seen in figure 8 is due to the fact that the transition shown is for D = 100, 
where the secondary circulation arising from the effect of the pressure-driven axial 
flow is not very strong; this symmetry disappears at larger values of D. More 
significant, though, is the effect on the bifurcation structure. The bifurcation 
structure for Ta = - 100 (figure 9) is the same as that seen previously : the reversal 
of the secondary flow direction for this rotational speed occurs smoothly, without the 
occurrence of any singular points. The existence in the original primary two-vortex 
solution of the type of four-vortex structure seen in figure 8 is restricted to a small, 
transitional range of the parameter space, in good agreement with the observations 
of It6 & Motai (1974). 

For lTul > 141.1, however, the smooth transition in the bifurcation diagram 
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FIGURE 10. Bifurcation diagram a t  Ta = -250. Region around D = 900 is expanded in inset. 
Key as for figure 5. 

Ta D- D+ D m  Ddia 

350( + ) W(+) 
- 125 - - 395( + ) 1000( + ) 

- - - 100 

- 150 486.18 482.99 485( - ) 1450( + ) 
- 200 709.42 664.54 700( - ) 2000( + ) 
- 250 963.73 860.57 940( - ) 4900( + ) 
- 500 2244.17 2084.85 2200( - ) > 5000 
- 750 3764.30 3544.66 3730( - ) > 5000 
- 1000 5618.36 5244.33 >5000 > 5000 

TABLE 2. Turning point development in the primary solution family. Negative rotation, 
secondary flow reversal region. 

observed for Ta = - 100 is replaced by a more complicated pattern through the 
appearance of a cusp in the primary solution branch, so that there is now an 
intervening unstable branch in the region of the secondary flow reversal. This is 
shown for Ta = -250 in figure 10. The appearance of the cusp is interesting in that 
i t  would give rise to abrupt transitions and hysteresis effects as parameters are 
changed in practice. Table 2 gives the positions of the turning points developing in 
the primary solution as a function of Ta,  with D- denoting the first turning point, 
where the solution turns to become unstable, and D, the second, after which another 
stable branch exists. Although the turning points are associated with the reversal of 
the secondary flow, they do not correspond to the appearance and/or disappearance 
of the additional vortex. Table 2 also lists for comparison the approximate range 
over which the primary solution exhibits four-vortex structure, with Dapp denoting 
the appearance of the vortex arising from the curvature effects, i.e. the one observed 
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Ta 
0 

- 1  
- 10 
- 100 
- 250 
- 500 
- 600 
- lo00 

D, 
955.73 
957.51 
972.67 

1131.77 
1494.61 
2295.14 
2861.61 

>5OOo 

D, 
2494.22 
2503.06 
25 15.94 
2630.90 
2741.70 
2966.64 
3406.37 

>5000 

TABLE 3. Turning points for the case of negative rotation 

in stationary systems, and Ddis the disappearance of the vortex present in the 
rotation-dominated region. The sign (plus or minus) denotes whether the transition 
occurs on a stable or an unstable branch respectively. For the first two points in the 
table the flow reversal is smooth and these points are included in the table only for 
comparison of the four-vortex coexistence region. The Dean numbers associated both 
with the turning points and with vortex appearance and disappearance increase with 
increasing magnitudes of the Taylor number, as do the widths in the D domain of the 
cusp and the coexistence region. Such interdependence of effects of Dean and Taylor 
numbers was also seen in the previous section (cf. figures 2 and 4) and is discussed 
further below. 

Further increasing the magnitude of Ta enhances the strength of the secondary 
flow, now with the new circulation pattern, and decreases the strength of the axial 
flow. This ultimately leads to the rotation-dominated region, where the effects of the 
pressure-driven flow are negligible compared to those of rotation, and the flow 
situation resembles that in the limit of very fast rotation as described in the previous 
section. 

In  addition to the primary solution, the other solutions discussed earlier remain as 
independent solutions, but the turning points are shifted towards larger D as the 
effects of rotation are increased. The effects of the increased strength of rotation on 
these families are similar to those seen for the primary solution family. Table 3 shows 
the positions of the turning points of the two additional families as a function of the 
Taylor number. The values at high lTul indicate that only the primary solution 
branch exists in the usual range of interest (up to D = 5000) for high rotational 
speeds. For small magnitudes of Tu no flow reversal is observed in the flows belonging 
to the additional families, but as the effect of rotation becomes stronger, secondary 
flow reversal similar to that for the primary solution is observed. Figure 11 depicts 
a solution from the stable four-vortex solution for Ta = -500. The flow pattern is 
more complex: an additional circulation vortex appears near the inner wall, 
becoming weaker and smaller as D is increased. 

A simple criterion for estimating where the secondary flow reversal occurs can be 
obtained from a simplified analysis neglecting secondary flows. For small curvature, 
the axial velocity distribution can be approximated by the superposition of 
Poiseuille flow and solid-body rotation, from which the average axial velocity is 
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FIGURE 1 1 .  Secondary flow streamlines and axial velocity contours for stable four-vortex 
solution at  Ta  = -500. (a )  D = 3000; ( b )  D = 5000. 
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Tu Additional vortex appears Original vortex disappears 

- 100 -3.5 - 6.0 
- 125 -3.2 - 8.0 
- 150 -3.2 -9.7 
- 200 -3.5 - 10.0 
- 250 -3.8 - 19.6 

TABLE 4. Secondary flow reversal region. The parameter introduced in equation (7) is shown as 
a function of Ta. 

If a zero mean axial flow is used as a measure of when the effects of rotation and 
pressure-driven flow balance each other, the criterion 

- -4 
D 
Ta 
_ -  (7) 

is obtained as an estimate of the region where the secondary flow reversal should 
occur. If DITa, the Rossby number, is evaluated at the positions at which secondary 
flow reversal occurs, the results shown in table 4 are obtained. ‘Original’ refers to the 
vortex possible for small values of D, i.e. with circulation from the outer wall of 
the tube to the inner through the central core of fluid, and ‘additional’ to the one 
induced by the pressure-driven axial flow. Equation (7) is consistent in predicting the 
region where reversal of the secondary flow occurs, although the range of coexistence 
of the two solutions increases with increasing magnitudes of Ta. Because of use of 
Poiseuille flow in the approximation of the axial velocity profile, equation (7) is 
expected to be more accurate for small values of D. In fact I t6  & Motai (1974), whose 
development was limited to small D ,  were the first to note the dependence of 
secondary flow reversal on the parameter DITa. 

4. Concluding remarks 
The results presented here appreciably extend the range of parameters for which 

flow in rotating curved tubes has been studied, especially as regards the bifurcation 
structure. The behaviour for codirectional rotation and axial flow is qualitatively the 
same as that in the absence of rotation, but for counterdirectional rotation and axial 
flow, a secondary flow reversal is possible, which may be accompanied by a new cusp 
in the bifurcation diagram at higher ITal. The existence of additional symmetric 
solutions may be investigated via the morphogenesis approach used in I ; the relevant 
perfect problem is the combined Taylor-Dean situation of pressure-driven azimuthal 
flow between corotating cylinders (Daskopoulos & Lenhoff 1990). The effect of 
curvature, in equation (1) and, more generally, when the small-curvature assumption 
is relaxed, remains to be investigated, as do the possibility of asymmetric solutions 
and the stability to asymmetric disturbances. 
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